PHYSICAL REVIEW E

VOLUME 51, NUMBER 4

APRIL 1995

Optical phenomena on the interface between a conventional dielectric and a uniaxial medium
with mixed metal-dielectric properties

E. G. Gamaly
Laser Physics Centre, Research School of Physical Sciences and Engineering, Australian National University,
Australian Capital Territory 0200, Canberra, Australia
(Received 11 April 1994)

Two optical effects are described at the interface of an isotropic conventional dielectric and a uniaxial
medium with mixed metal-dielectric properties, when the specific matching of the dielectric constant in
the homogeneous medium to that in the anisotropic one has been introduced. First, the reflection
coefficient at the interface of these media is independent on the angle of incidence of a light beam.
Second, this interface ideally supports (with zero attenuation) a surface wave with an exact matching of
the phase velocity of a surface wave to the phase velocity of an electromagnetic wave in the isotropic
medium. The possibilities for checking both effects in an experiment have been discussed.

PACS number(s): 42.25.Gy, 78.20.Fm

I. INTRODUCTION

It has been shown quite recently [1,2] that the interface
between the homogeneous dielectric and an anisotropic
plasma having nonlocal electric properties can support a
surface wave. Moreover, it has become clear that by
changing the degree of asymmetry of an electron distri-
bution function one can change the phase velocity of a
surface wave and its attenuation. The degree of asym-
metry for the two-temperature Maxwellian electron dis-
tribution function may be characterized by the ratio of
the transverse to the longitudinal temperature. For some
particular degree of asymmetry it is possible to achieve
the exact matching of a phase velocity of a light wave in a
dielectric to the phase velocity of a surface wave propaga-
ting along the interface between the isotropic dielectric
and anisotropic plasma. It seems obvious that the same
arguments are applicable for the case of any anisotropic
medium with local and nonlocal electric properties that
may have the metal-like optical properties at least along
the one optical axis. In this case the degree of asymmetry
may be related to the ratio of complex dielectric con-
stants along the optical axes. The propagation,
reflection, and refraction of an electromagnetic wave in
different layered (isotropic, anisotropic, and mixed) media
has been calculated in many papers and described in the
textbooks in a rather general form [3-7]. The goal of the
present paper is to describe the proper conditions for the
supporting of a surface wave on the boundary between a
conventional homogeneous dielectric with positive real
permeability and an anisotropic medium having a local
relation of the current to the electric field and mixed
metal-dielectric optical properties. The unusual optical
properties of the interface of two such media in the case
of exact matching (and a small mismatch) of the dielec-
tric constant in an isotropic medium to the constant
along one optical axis in a uniaxial medium are calculat-
ed and discussed. We will discuss also the possible condi-
tions for the excitation of a surface wave in an experi-
mental situation.
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II. DISPERSION RELATIONS
FOR THE SURFACE WAVE ON THE BOUNDARY
OF AN ANISOTROPIC MEDIUM

Let us consider the interface between two semi-infinite
media: the homogeneous dielectric with real positive
dielectric constant €,>0 (at z <0) and an anisotropic
medium at z >0, which is characterized by tensorial per-
meability af,zﬂ) The x and y axes are in the plane of an in-
terface. We assume that the relation of the electric field

to the electric current is local,
j a zaaBE B (1)
Here 0,5 is a complex conductivity tensor related to
the dielectric tensor through the familiar equation

eup=08pti(4T/0)0 45 , ()

where 5 is the Kronecker symbol and o is a frequency
of an electromagnetic wave. The problem is described by
the set of Maxwell equations,

VXB:fﬂj_Fla_E,
c ¢ ot 3)
1 0B
XE=———.
VXE d ot

Assuming that each component of E and B has a time
dependence

E,B~exp(—iwt) , 4)
one can reduce the set (3) to one equation,
grad divE—AE ,=kJe,gEg , (5

where we denoted ko=w/c. Let us choose the coordi-
nate axes to coincide with the main axes of the tensor €4,
thus reducing the last one to the symmetrical form ¢,5=0
(aP),
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€,4,0,0
€,= |0,€,,,0 | . (6)
0,0,¢,,

Introducing (4) and (6) into (5) one can easily arrive at
the familiar Fresnel equation [8]. Let us consider the
case of a medium that is a uniaxial crystal, thus assuming
that e,, =¢,,=¢, and €,,=¢,. In this case the Fresnel
equation splits into two independent equations,

n’=e )

e,&,—nle,—g,(n2+nl)=0. (8)
Here we denote n,=k,/k,. When both components of
the dielectric tensor are real and positive Egs. (7) and (8)
describe the familiar birefringence phenomenon: split-
ting the wave refracted into the ordinary [Eq. (7)] and
extraordinary [Eq. (8)] waves. This phenomenon be-
comes more complicated in a medium where one (or
both) permeability components may be negative or (and)
complex numbers, thus revealing metallic properties. In
this case the interface between a homogeneous dielectric
and an anisotropic medium can support a surface wave.
We will study a surface wave excitation and propagation
when an anisotropic medium has mixed metal-like and
dielectric properties.

Let us choose the z axis direction to coincide with the
direction of the normal to the interface between two
media, and the y axis to be parallel to the interface plane.
The field components are (p-polarized wave)

E(0,E,,E,); B(B,0,0) ~exp{ —iwt +ik,y +ik,z} . 9)

We are looking for a solution describing the surface
wave propagation in the y direction as thus being evanes-
cent to both sides of the interface. For the p-polarized in-
cident beam (9) there is only an extraordinary wave in an
anisotropic medium. From boundary conditions of con-
tinuity E, and B, at the interface, one can obtain the
usual dispersion relation for the surface wave:

klz_k22 n%z_n%z
———=—— or =—

2
€ 8y gy €]

(10)

Assuming that the optical properties are independent of
the direction in the x-y plane, it is easy to obtain from (8)
the expression of n,, in a uniaxial medium

m

2
na;

E—y(s;nf), (11)

and the formula for n, in a homogeneous dielectric

ni, =g, —n}. (12)
Introducing (11) and (12) into (10) one obtains the disper-
sion relation for the surface wave in the final form

—_pn? I
z nyzsl ny

€€, e?

(13)

Solving (13) for a normalized wave vector of the sur-
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face wave n,,, we have
(E _51)
ni=eg—>—0- . (14)
(e e, —¢7)

Making use of (14) one can express (11) and (12) in the
form of the functions of dielectric permeabilities of both
media,

(e, —¢,)
nl=-2=: (15)
% (£yaz——a%)
e2(e,—¢;)
ni=—— (16)
(e €, —€7)

Assuming e,=¢,=¢, and €,<0, |g,/>€, one obtains
from (14), (15), and (16) the conventional dispersion rela-
tion and attenuation coefficients near the interface of a
homogeneous dielectric and a homogeneous metal. It is
clear from the previous formulas that the replacement of
a metal by a uniaxial medium introduces the new
parameter —the mismatch of dielectric constants €, —¢;,
which allows us to steer effectively the propagation of the
electromagnetic waves (e.g., surface waves) along the in-
terface.

III. DISPERSION RELATIONS
AND MATCHING CONDITIONS

Let us consider the case when both permeabilities are
positive and real numbers g, >0, €, >0, while g, is a com-
plex number with the negative real part. The last as-
sumption means that the uniaxial medium has metallic
properties in the y direction. Analysis of (14), (15), and
(16) for this case shows that the following conditions
should be fulfilled on the interface between two media to
support the surface waves:

€,>€;, Reg, <0, |g|>¢g;. (17)

Now we can express (14) in an explicit form, introducing
€, as

£y=-—]ey|+i£y, €, <0 .
After straightforward algebra one obtains
£1(e,—&, (e, e, | +e}) ]
b

[(e, e, |+ +ele,?

Ren),2=£1 [1+
(18)

"

2 —
Ln2= €1€,€, (g, —~¢€;)

Y (e, ley | e +eey?]

It is convenient to denote the real part of the wave vector
of a surface wave as a propagation constant

1/2
n2|+Ren?
_I_.:".l_z__y , (19)

B=koRen, =k, {

and the imaginary part of the wave vector as an attenua-
tion coefficient

172

2| _ 2
|ny|—Ren;

2 (20)

Yy =kolmn, =k,




3558

Equations (18), (19), and (20) reveal the distinctive
features of this structure; the phase velocity (V,, =w/B)
and the attenuation coefficient of a surface wave, and the
attenuation coefficients of the evanescent waves in both
media are strong functions of the mismatch of the dielec-
tric constants. In the case of the exact matching (g,=¢,)
the phase velocity of the surface wave equals the phase
velocity of the incoming electromagnetic wave (from the
homogeneous medium). Simultaneously, the attenuation
coefficient for the surface wave as well as the coefficients
for evanescent waves in both media are equal to zero.
The last condition means that in this case the interface
guides the surface wave without damping in both media.
Let us note that along with the wave vector components
in the z direction for both media, and the attenuation
coefficient of a surface wave, the electric field component
along the interface, E,, is also proportional to the
mismatch and turns to zero for exact matching. The last
point means that there is no driving field in the y direc-
tion, and consequently no motion of the conductivity
electrons, and no damping related to the resistance. Thus
the surface wave propagates along the interface, being
driven by the same dipole oscillators related to the same
dielectric constant on both sides of the interface.

It is difficult to find real optical materials with exact
matching of the dielectric permeabilities. Let us intro-
duce the relative mismatch in the form

€7 &
———— < 1<g<g, .
€

5=

Now one can present the ratio of the phase velocity in a
homogeneous medium to the phase velocity of a surface
wave and attenuation coefficient explicitly for the case of
small mismatches

V;}Q: l818(|e;|+sl)

vy 2 (ley]+ey)?
2n

e3/%)8

y =kolmn, =k 1 L2

°2 (lg)|+e?

It is interesting to note that the attenuation coefficient
is directly proportional to the product of a mismatch and
the imaginary part of a dielectric constant in the y direc-
tion related to conductivity. Thus one can reduce the at-
tenuation by either increasing the conductivity or de-
creasing the mismatch.

IV. REFLECTION AND REFRACTION
ON THE INTERFACE OF TWO MEDIA
WITH MATCHED PROPERTIES

Let us consider refraction and reflection of the p-
polarized light wave (9) on the interface of a homogene-
ous dielectric and a uniaxial crystal, keeping in mind the
possibilities of excitation of a surface wave. Following
the conventional procedure, we present the electromag-
netic field in a homogeneous dielectric as a sum of an in-
cident (B) and a reflected (B, ) wave in the form
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B=Bgexp{ —iot +ik,y +ik,,z}
+B,exp{ —iwt +ik,y —ik,z} ,
and a refracted wave in a uniaxial medium as
B,=Bg,exp{ —iot +ik,y +ik,,z} .

Making use of the boundary conditions and Egs. (11) and
(12) one easily arrives to the reflection coefficient in the
conventional form as follows:

R =|B,/By*=|(1—4)/(1+ 4)|?, (22)
where
€ | g 1/Z(zr:z—nyz)”2 € | ny,
A== D172 ¢ |p.
g, | g (gy—ny) € | M1z

Here n,,, n,,, and n}=g;sin’6 are the normalized com-
ponents of a wave vector at the interface z =0, 0 is the
angle of incidence (measured from the normal to the in-
terface). It is clear from the previous formula that in the
case £;=¢, reflection coefficient is independent of the an-
gle of incidence. It is also clear that this property relates
to the angle dependence of n,, and n,,, which is exactly
the same near the interface due to the continuity of ny,
and for this reason it cancels in (22) for the case of exact
matching. This is another manifestation of the same mi-
croscopic properties of this particular structure as were
explained for a surface wave. This effect will exist for a
uniaxial crystal with any properties in the y direction
(only matching of dielectric constants in the z direction is
necessary).

It is convenient to consider separately the case when
all dielectric constants in both media are real and positive
and the case of the mixed metal-dielectric properties in a
uniaxial medium. Introducing the mismatch one can ex-
press (22) for the first case in the form

A, (cos?0+8)!72
(1+8)172 cosf

3

12
where 4,= e—} =A(6=0). (23)

y

The simple analysis of (23) shows that the reflectivity has
a minimum (R =0) at

A5

00829=—-“—'—_"2—
(1+5—A432)

>

and it increases to R — 1 at 6— /2. For the second case
let us introduce the metallic part of the dielectric permea-
bility in the form

o .o iV
g,=¢,+ig) =g le’,

e, |

cos¥ = —

le, |’

le, | ={(e})*+(e))?}1 /2.

Now one can express the reflection coefficient as
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1+A§—2ARCOSX
R= 2

b

1+A,%+2ARcos%

_ Aor  (cos?0+8)!72
(1+8)172 cos6

A

>

1/2 (24)
€
le, |
172

AR(6=0)= Az =

»

le, | —le; |
2le, |

v
2

Ccos

In this case the minimum value of the reflectivity is
nonzero:

l—cos—\Ii 2
Abr

R at cos?6 (25)

min min
1+cos— 14+8— A
2

It is clear that the s-polarized incident wave should be
totally reflected in the case of metallic properties in the y
direction for an anisotropic medium (s polarization fits to
the ordinary refracted wave n2=sy). In the case of real
and positive permeability in the y direction it would be
usual reflection and refraction of the ordinary wave for
the s-polarized incident wave.

Thus, it is possible to excite a surface wave along the
interface of a homogeneous dielectric and a uniaxial crys-
tal with metallic properties in the y direction and
matched dielectric properties in the z direction by a p-
polarized wave that is incident on the interface at a graz-
ing angle. It is also possible to excite the surface wave in
the same geometry by an unpolarized light. One should
note that in the last case the efficiency of excitation will
be lower due to the total reflection of the s-polarized part
of the incident beam. The interface of these matched
media serves as an ideal polarizer for an incident unpolar-
ized light.

V. POSSIBLE STRUCTURES
FOR AN EXPERIMENTAL OBSERVATION
OF THE PROPOSED EFFECTS

(i) It is possible to measure the reflectivity dependence
on the angle of incidence at least for two pairs of known
materials with relatively small mismatches. The main
difficulty of such a measurement relates to a small abso-
lute value of the reflectivity.

The first combination consists of CsF as a homogene-
ous dielectric (e;=2.340) and familiar birefringent crys-
tal CaCO;(e, =3.1684, £, =2.3654) for the wave length
of 242 nm [11]. The relative mismatch for this case is
0.0105. One can easily calculate with the help of formu-
las (23) the angle dependence of the reflectivity. The
reflectivity that corresponds to the exact matching equals
5.7X107% and coincides with the reflectivity at the nor-
mal incidence for this mismatch.

There is also the polymer-PPV [poly-(p-phenylene vi-
nylene)] with a large optical birefringence. The reported

optical properties of PPV for the wavelength of 632.8 nm
are n,=2.17-2.22 (TE mode) and n,=1.61-1.62 (TM
mode) [12]. There are also several optical materials to
match PPV for the measurement of the reflectivity angle
dependence. The smallest relative mismatch of 0.0125 is
for GeO, (n, =1.6054 [11]). For this case the reflectivity
at the normal incidence (coinciding with the angle in-
dependent reflectivity for the exact matching) is 0.0244.

(ii) The most suitable material for the observation of
the excitation and propagation of a surface wave along
the interface of an anisotropic medium having mixed
metal-dielectric properties is, of course, pure crystalline
graphite. The electric properties of this material for the
incident beam with the wavelength of 248 nm are
£,=3.28, €, = —4, £/=6 [9]. The best matching dielec-
tric for this case is CsCl with n;=1.77 [11] giving the
relative mismatch of 0.0469. For this mismatch the
minimum reflectivity is 0.359 (at 0,;,=79.5°) in compar-
ison with 0.395 for the perfect matching (or for normal
incidence in the case of this mismatch). The ratio of the
phase velocities of a light wave in CsCl to that of a sur-
face wave is 1.006, which is much better than for the fa-
miliar case of a surface wave along the air-silver interface
(Vair /V1=1.032 [7]). On the other hand the attenuation
in the considered case is larger due to poor conductivity
of graphite along the basal planes. Another feature of the
considered structure is the strong dependence of the at-
tenuation coefficient of both evanescent waves in the z
direction on the magnitude of a mismatch. If the
mismatch is small the surface wave has almost a symme-
trical space profile in the z direction. For the considered
case of a CsCl-graphite interface the attenuation
coefficients are

a,, =koImn,,=0.207k,,
a,, =kyImn,,=0.289k,

(compare to the case of the
a,,,=0.25ky, ag=4.18k, [7]).

air-silver interface

VI. ROLE OF SPATIAL AND TEMPORAL DISPERSION

In the previous treatment we considered the medium
properties as nondispersive. However, it is well known
[10] that in the case of a metal the different relations be-
tween three characteristic spatial scales of the problem
vr/®, lyin, I, are manifestations of different kinds of
dispersion. Here v, is the Fermi velocity, o is the fre-
quency of the incident light; /., [, are correspondingly
the skin depth and electron mean free path. When
l, <<v;/w,l, <<1g;, there is no dispersion (normal skin
effect). At higher frequencies the interaction enters into
regime of the anomalous skin effect when 1g;, <</,
lgin <<v; /. These relations are clear conditions for the
spatial dispersion. With further increase of frequency the
interaction enters into the limiting regime of a high fre-
quency skin effect when v, /0 <<Iy,, vy /@ <<I,. In this
case the prevailing effect is the temporal dispersion. For
the case of an electromagnetic wave interacting with a
uniaxial medium having mixed properties, at least elec-
tric properties in one direction may be affected by disper-
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sion effects. Let us estimate the characteristic space
scales for the typical metal (n,=10" cm ™3, v,=1.3X 10
cm/s; I, =v; /Veg; Vg~ kT /h is the effective frequency of
phonon-photon interaction). It is easy to see that for a
laser wave length comparable or less than a micron,
laser-matter interaction falls into the frames of the high
frequency limits for skin effect. Thus the conductivity in
this case depends on the form of the Fermi surface and
on the interaction function between conductivity elec-
trons [10].

VII. DISCUSSION AND CONCLUSION

The explicit description of a surface wave propagating
along the interface of an isotropic conventional dielectric
and a uniaxial crystal having mixed (metalliclike along
one optical axis and dielectric along the other) electric
properties has been formulated. It is shown that in the
case of the exact matching of the dielectric constants in a
homogeneous medium and in uniaxial crystal along one
axis, the interface serves as a perfect (with nonzero at-
tenuation) guide for the surface wave. In this case, it is
also possible to achieve exact matching of the phase ve-
locity of an electromagnetic wave in an isotropic medium
to the phase velocity of a surface wave. At the same time
the attenuation coefficient of the surface wave is zero for
exact matching conditions. For the general case of a
plane wave propagation in an anisotropic medium the
direction of the Pointing vector does not coincide with
the direction of the wave vector of a wave. For the k vec-
tor lying in the y direction the tangent of the angle be-
tween two vectors is proportional to the ratio E, /E, and
consequently it is proportional to the mismatch of the
dielectric constants. Thus for the considered case of the
exact matching this angle is zero, and the wave (energy
flux) is driven along the y axis by reemission of the same
dipole oscillators related to the same positive dielectric
constant on both sides of the interface. Due to the ab-
sence of the field component along the y axis there is no
conductivity current in this direction and consequently
no attenuation due to resistivity. One can consider such
nondissipative propagation of a surface wave as a wave
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propagation along the optical axis in a single anisotropic
medium because the exact matching means that near the
interface the wave “sees” the same optical constants on
both sides of the interface.

The interface between such matched media reveals also
another unusual optical property, namely, the reflection
coefficient at this interface is independent on the angle of
incidence of the light beam from the isotropic medium.
The explanation of this effect is as follows. The absorp-
tion (reflection) coefficient depends only on the ratio of
the wave vector components perpendicular to the inter-
face. For the case of the exact matching the angle depen-
dence of these vectors is the same near the interface due
to continuity of n, on the interface. By this reason the
angular dependence cancels in the formula (22) for the
reflectivity just leaving the reflectivity dependence only
on the ratio of the different dielectric constants. The last
property allows the effective excitation of the surface
wave by oblique incidence of the light beam on the inter-
face. The combination of two materials with such
specifically matched properties may be used as a wave
guide or polarizer. It is worth noting that for a small
mismatch the polarization of the surface wave is ellipti-
cal, which is usual, but in the case of exact matching it
becomes plane polarized. The using of new materials (for
example, graphitic nanotubes filed by high conductivity
metals [13]) may allow us to reduce the attenuation of a
surface wave by order of magnitude even for the case of a
small mismatch of the dielectric constants. It seems
plausible that by choosing the different combinations of
materials it is also possible to find different applications
of these effects. It is also possible to use the materials
with anisotropy induced by laser light (as pointed out by
Dr. W. Krolikowski). We will present elsewhere the
studies of analogous effects in media with nonlocal prop-
erties.
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